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SUMMARY

The exhaust plume flow field of the Skylab (formerly AAP) configuration
rcaction control system (RCS) engines has been determined analytically as a
preliminary step in the prediction of'heating rates, forces and contaminatlion
effects due to these plumes. The engine utilized, which is designated R-4D,

burns nitrogen tetroxide and monomethlyhydrazine (NZO4/MMH) propellant.

Engine configuralions, nozzle geometries, propellant description, and
operating conditions were supplied by three agcencies: (1) NASA-Marshall

Space Flight Center, Huntsville, Alabama; (2) the Marquardt Corporation,

Van Nuys, California; and (3) NASA-Manned Spacecraft Center, Houston, Texas.

Plume flow ficlds in a vacuum environment were calculated for the engine
used on the Command Scervice Module. Calculations began in the combustion
chamber extended through the nozzle and continued into the plume to about 50

fecet axially and radially from the engine.

Flow striations (oxidizer -to-fuel variations) were considered in the anal-
ysis based on injector information supplied by the Manned Spacecraft Center.
thermochemical program was used to define combustion product specie concen-
trations and thermodynamic properties of the propellant system. A one-
dimensional streamtube solution was used to define the physical and thermody-
namic properties after equilibrium combustion. An equilibrium chemistry
ducted mixing analysis was made through the combustion chamber. A time-
dependent transonic solution was used to describe the two dimensionality of the
flow in the convergent section of the nozzle and through the nozzle throat. A
method-of-characteristics solution was begun at the nozzle throat using equi-
librium thermochemical properties up to a point in the flow at which a kinetic
analysis indicated that the flow was chemically frozen. The plume was then

generated using the nozzle exit conditions as starting information. The nozzle

A



boundary layer cifect on the plume was included and the region where non-
continuum conditions may exist is indicated.

Two shock waves were conside rcd and treated in this analysis. The
nozzle shock and its reflection from the nozzle axis were computed as inte-
gral parts of the total flow field. | Also included in this analysis is a corre-
lation study of sé.vcral. R-4D engine and pluiﬁe parameters. This .infbormation
provides justification for the particular oxygen-to-fuel gradient used as well

as verification of the gencral analysis proccdure.
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Section 1

INTRODUCTION

When attitude control maneuvers arc required for the Skylab configura-
tion, small rcaction motors are employed to effect these mancuvers. Two
separate reaclion control systems are utilized in the Skylab configuration:

(1) the Auxiliary Propulsion System (APS) which is located on the aft end of
the S-IVB Orbital Workshop; (2) a rcaction control system (RCS) on the Com~
mand Service Module (CSM). When some of the motors of these systems are
operated, various parts of the overall configuration may be subjecled to direct
or indirect impingement of the exhaust plume from the operating engine. An
analysis of the Wet Workshop APS system engine is containcd in Ref. 1. This

report is concerned with the Marquardt R-4D engine used on the CEM.

The effects of plume impingement should be carcfully assessed with
respect to possible adversc forces and heating rates which may arise. The
forces must be evaluated in order to determine system size and duty cycle as
well as for structural loading effects. The heating rates duc to impingement
on various parts of the vehicle are also an important consideration. Some
parts of the vehicle may have temperature-sensitive components for which
the environment must be known in order to protect them properly. Another
effect which must be evaluated is concerned with the possible contamination
which may occur on the portions of the vehicle subject to plume impingement.
It is important to be able to predict any changes which the vehicle surfaces
may undergo duc to the adverse rocket plume environment. Tempecrature
control devices, for example, are dependent upon their surface optical prop-
ties for effcctive operation. Thus, if contamination changes thesec properties,

the effective use of the device may be compromised.

In view of the many problems which arise due to plume impingement, it
is important to predict adequately the resulting effect on a particular vehicle

or portion of a vehicle. In order to make predictions of plume impingement



effeccts; an accurate and detailed description of the plumec must be available.

It is the purpose of the study reported hercin to provide the analytical descrip-
tion of plumes from the Skylab configuration Reaction Control System motors
(R-4D) so that their effects on the vchicle can be analyzed. The data pre-
sented in this report arc for free plumes exhausting into a vacuum environ-
ment and do not include the impingement effects per se, but provide basic

information necessary for conducting impingement analyses.




Section 2
METHOD O ANAILYSIS

The importance of plume impingement with respect to the Skylab con-
figuration dictates that the plume data utilized be as detailed as possible,
Since there are numerous methods for analyzing plumes based upon various

assumptions, the methodology used in this study is discussed in some detail.
2.1 COMBUSTION CHAMBER AND NOZZLE THROAT

The calculational procedure was begun with a combustion chamber analy-
sis consisting of a streamtube combustion solution (Ref.2) coupled with an
equilibrium, ducted, mixing calculation (Ref. 3). Because radial mixture ratio
gradients were present, variations in the combustion gas properties were
accounted for by using a number of streamtubcs each with a different mixture
ratio. The solution assumed the gases to be in chemical equilibrium. No
radial pressure gradients were allowed, and the inlet conditions at the injector
face were determined by the extensive correlation study discussed in the

Appendix,

The Streamtube program (Ref.2) was used to determine the physical and
thermodynamic properties after equilibrium combustion to provide data for the
ducted equilibrium mixing program (Ref. 3). The equilibrium mixing calcula-
tion was done for the flow through the combustion chamber, and the resultant
properties at the entrance to the convergent section were used in the transonic
solution, The transonic region of the R-4D engine was analyzed using a Lax-
Wendroff-type of time-dependent solution. The two-dimensional effects are
thus included in the transonic calculations, The program treats flows with
oxidizer-to-fuel (O/F) gradients, and real gas equilibrium processes were
used. The transonic program generated a starting line, i.e., initial con-
ditions, for beginning a method-of-characteristics (MOC) calculation for the

nozzle expansion section, The staxrting line derived in this fashion accounts



for combustion chamber momentum loss and radial flow striations, but does
not account directly for combustion efficiency. Boundary layer and wall heat

transfer in the combustion chamber were also neglected.
2.2 NOZZILE EXEANSIQN

Once the nozzle throat conditions werc known, a MOC calculation was
used to analyze the supersonic flow downstream of the throat. The Lockheed
Method-of-Characteristics Computer Program (Ref, 4) was used to accomplish
all the supersonic calculations for this study. The basic program of Ref. 4
was specially modified to handle the flow striations which existed in the engines.
Initially, the flowficld chemistry was assumed to be in cquilibrium and the gas
properties were obtained from the NASA-Lewis Research Center Thermochem-
ical program (Ref. 5). To determine the chemical reaction frecze point, the
pressure distribution along the nozzle wall and centerline obtained from the
chemical equilibrium solution were uscd as boundary conditions for a onc-
dimensional calculation using finite rate chemistry (Ref. 6). The strcamlines
analyzed in each case consisted of the nozzle centerlinc and the wall contour.
When the "freeze' points were determined from the finitc-rate analysis, the
thermochemistry data were regenerated using the pressure frecze option of
the NASA-Lewis program (Ref.7). This option allows the thermochemical
calculations to switch from equilibrium to frozen at a specified pressure which
was obtained from the kinetics analysis of Ref. 6. The oquilibrium/frozen gas
properties were then used in a second calculation of the nozzle flow field which
approximately accounted for the finite-rate effects on the resulting flow field.
Because mixture ratio gradients werc present, each streamline was analyzed
at its own local O/F value and the "freeze points” on streamlines between the

centerline and nozzle wall were assumed to vary linearly with O/F ratio.
2.3 NOZZLE SHOCK WAVES
Most contoured nozzles give rise to the formation of an internal shock

wave. The shock is initiated by a discontinuity in the sccond derivative of the

contoured nozzle at the junction between the expansion scction, near the nozzle
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throat, and the recurved section which comprises the remainder of the nozzle.
This shock is generally weak at its origin and gradually incrcascs in strength,
becoming quite strong as it intersects the nozzle axis of symmetry. A detail-
ed description of the plume requircs that the effect of this shock on the local
flow propertics be taken into account. Thus in kceping with the study objec-
tive, this shock wave was computed as an integral part of the nozzle flowfield

analysis.

When shock waves, in general, approach the nozzle axis of symmetry,
two things may happen. First, if the shock is strong enough, a Mach disk
may form which causes the flow to ""shock down' into thc subsonic regime,
Weaker shocks, however, may go through a regular reflection, at least in an
inviscid analysis, such that the flow rernains supersonic even bchind the re-
flected leg of the shock system. Shock waves encountered in the nozzles of

this study were weak and reflected regularly at the axis,.

2.4 PLUME ANAILYSIS

‘When the nozzle solution was completed, including the incident nozzle
shock, the analysis was continued into the plume flow field. The initial condi-
tions, i.e., start line, for the plume analysis consisted of the downstream
shock points from the nozzle analysis. However, because the shock itself does
not progress all the way to the nozzle wall, other points from the nozzle analy-
sis were also required. These points consisted of flowfield data points pro-
ceeding from the shock wave, across the nozzle exit plane, to the nozzle lip,
The flowficld chemistry used by the plume analysis was the same as that used
for the nozzle. This was possible because the kinetics analysis had indicated
that the flowfield chemistry was frozen inside the nozzle and, since the flow

continually expands into the plume, the chemistry should then, remain frozen,

When the procedure was restarted to generate the plume, the incident
nozzle shock was reflected from the nozzle axis and continued throughout the
plume, The plume was allowed to expand to a vacuum environment as a bound-

ary condition, This is, of course, quite impractical in a numerical solution,



because of the extremely high Mach nurabers and pressures which approach
zero. To circumvent the numerical problems, the expansion was only allowed
to approach the limiting expansion angle within 10 deg and the solution was

stopped at that point.

2.4.1 Non-Continuum Effects

When a plume expands into a vacuum, its density eventually becomes so
low that the flow no longer obeys continuum gas dynamics laws. Ideally,
plume calculations should consider non-continuum effects (Ref. 8). Continuum
analyses, for instance, should be stopped when the flowfield paramcters and gra-
dients satisfy the Knudsen number criteria for free molecular flow, i.e.,
vibrational, rotational and translational energy modes 'frozen'. The calcu-
lations should then be continued along strcamlines from an apparent source,
assuming that the streamlines remain straight and the molecular velocities
are all in the direction of the flow. In the {ree molecular regime, therefore,
the stream vclocity is constant and the density varies in inverse proportion
to the cross-sectional area of the stream tube. For the analysis reported
here, continuum gas dynamic relations were employed throughout the flow.
Except for deviation of the {ranslational temperature, as the flow approaches
free molecular conditions, the continuum analysis is a good approximation.

A physical explanation of this phenomenon is that in using the method-of-
characteristics continuum analysis the angle between the streamlines and the
Mach lines becomes very small, such that there is little lateral interaction
between streamlines, thus approximating free-molecule flow. A calculation
was performed, however, of the location of the translational "freezing'' line

to indicate incipient free-molecule {low.

2.4.2 Nozzle Wall Boundary Layer

Several recent studies have indicated that the presence of a nozzle wall
boundary layer can have a significant effect on the local exhaust plume proper-

ties. Boynton in Ref.9 discusses the inviscid expansion of nozzlc boundary
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layers from various engines ranging in thrust from 10 1L to 80,000 1b. His
calculations indicate deviations which increase with expansion angle. Above
75 degrees expansion angle, for instance, differences in dynamic pressure

of a factor of 10 were found.

Another nozzle wall boundary laycr investigation was carried out in
Ref. 10, A typical small RCS engine was analyzed with and without the bound-
ary layer, Every input parameter, as well as the characteristic mesh size,
was identical so that the boundary layer effect was the only diffcrence between
the two cases. As in Ref.9, this study shows significant variations in the

plume due to the boundary layer, especially in the outer 50% of the flow,

In light of these studies, the nozzle wall boundary layer was included
in the present study, and its effect is inherent in the results presented in this

rceport,
2.4.3 Condensation

The condensed form of the species present in the exhaust plume was
not considered by the thermochemical or the flowfield analysis. Because of
this, vapor pressure data for the various spccies were examinecd to determine
if condensation could occur in the plume., Conditions in the continuum region
which could lead to the formation of condensed HZO were noted to exist for
flows of Mach 10.0 and higher. Conditions favorable to the condensation of
CO2 exist for flows of Mach 15.0, Conditions favorable to the condensation
of CO and NZ exist for flows of Mach 29,0, Condensation will probably not
occur for H,. Solid particles may exist for the CO, and H,O downstream of
the region where conditions for the condensation are favorable. Due to the
high velocities which exist in the plume flow field, condensed spescies may or
may not be formed in the plume region shown. Incipient condensation and the
calculation of a multi-phase plume flow field was not considered in this

analysis.



2.4.4 Accuracy of the Predicted Plume Envionment

Determining a quantitative value for relating the accuracy of a rocket
exhaust plumc cnvironment is a complex problem, involving numerous con-
siderations. A detailed evaluation of plumec environment accuracy is pre-
sented in Ref. 11 and can be used to estimate the gross accuracy of plume

flow field parameters.
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Scction 3
DISCUSSION

For the R-4D enginc analyzed, approximately 24 pcrcent of the fuel is
used for film cooling the engine and nozzle walls. Although this provides an
excellent heat barrier, the practice severely reduces engine performance.
In addition, its cffect is propagated into the plume, which creates regions of
varying mixlure ratio with attendant variations of thermodynamic and gas

dynamic paramcters.

Experimental tests of the R-4D engine conducted by NASA-Manned
Spacecraft Center resulted in a specific impulse of about 285 scc. One-
dimensional adiabatic flame temperature equilibrium calculations by the
NASA-Lewis Thermochemical program showed a specific impulse of 337 secc.
The difference in specific impulse values are atiributed to inefficiencies which
reduce the performance of the engines below the maximum cnergy available
from the propellants. Sevcral causcs of non-ideal performance have bcen
isolated, for instance: mornentum loss because of combustion, O/F maldis-
tribution, kinetic effects and two dimensional effects. These conditions still do
not account for the entire performance loss of the engine. The remaining

losses are attributed to the inefficiencies in the combustion process.

The ICRPG Committee (Ref. 12) has recommended a method of artifi-
cially reducing propellant heats of formation to account for combustion
inefficiencies. A dual study of the R-4D was thercfore conducted. The
standard heat of formation was used in one case ard the heat of formation
reduced by 250 cal/gm in the other case. The 250 cal/gm was an arbitrary
value sclected to approximate the experimental Isp value. Loss mechanisms
discussed previously were included in both analyses. Only the standard heat
of formation case is prescented here in order to provide conservative design

parameters.



In this analysis several of the loss mechanisms are inherent. The O/F
gradient effect, the momentum loss in the combustion process, two-
dimensional effects in the transonic and supersonic flow portions of the engine
were treated as integral parts of the analysis. The finite-rate effects were
treated by an equilibrium/frozen approximation procedure. A parametric
variation was done of the freezing point pressure used in the equilibrium/
frozen nozzle flow calculations. The effect of location of the freezing point
on the predicted Isp was found to be very small (Ref. 13). For extreme cases
such as freezing the flow at the throat, the IS was reduced by 5 percent. Any
of the freezing pressure values within the range of selection showed a negli-

gible variation in the predicted Isp value.
3.1 COMBUSTION ANALYSIS

Prior to performing the calculations reported in the main body of this
report, a correlation study of the R-4D engine using N204/A-50 propellants
was performed. Experimental data in the form of pitot pressures, heating
rates and performance were available which were used, along with injector
geometry, to determine mass flow and O/F ratio distributions. A detailed dis-
cussion of this auxiliary study is contained in the Appendix. Figure 1 shows

a sketch of the R-4D Rocket Engine.

The combustion analysis for N204/MMH propellants was conducted
based on the mixture ratio-mass flow distribution for N204/A-—50 propellants,

(see Appendix) and the method of analysis described in Section 2.

An assumption of uniform mass flow per unit area over the entire in-
jector face was made to eliminate severe step gradients in mass flow-mixture
ratio due to injector geometry. This assumption was necessary to obtain a
physically reasonable solution of the initial combustion process from the
Streamtube program. The proper overall mass flow was maintained, but the
exact mass flow through the preigniter region could not be matched using

this assumption.
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The initial O/F ratio distribution across the injector face, based on
the preceding discussion plus the assumption of a parabolic shape, is the

following:
O/F ratio = 3.5 -3.76 r?
where the dimensions of r are in-érhes.

The Streamtube program provided data for the Ducted Fquilibrium
Mixing program. The velocity, temperature and O/F ratio distributions at
the injector after the cquilibrium combustion and those at the entrance to the
convergent scction are shown in Fig. 2. From thcse results it was concluded
that a small arnount of mixing occurred through the chamber length,  This
was the result of the low value of constant viscosity model chosen (6,033 x
10-4 slugs/ft—sec) and because partial mixing had been presumed with the

introduction of uniform mass flow per unit area across the injector face.
3.2 TRANSONIC ANALYSIS

The nozzle contour, Fig.3, used for this analysis was obtained from
the Marquardt Corporation. The points from Table 1 were curve-fit by a
least-squares technique and the two resulting curves then used as upper

boundary conditions in the transonic and the MOC solutions,

0 < X< 0,278

2

R = -1.0 (\fo.27931 -x° - 0.%25)

0.278 < X < 6.984

3

R =-0.000256 X4 + 0,0058873X" - 0,074477 X2 + 0.66247X + 0,33698
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Table 1

NOMINAL R-4D ENGINE OPERATING CHARACTERISTICS FOR
COMMAND SERVICE MODULE REACTION CONTROL

SYSTEM APPLICATION

Propellant

Fngine Parameters

Oxidizer NZO4

Fuel CH3 NHNH

(Monomethylhydrazine)

2

A/A% = 400
.. = 5.46 in.
exit
®exit = 8deg
P, =100 psia
O/F = 2.03+0.03
My a7 0.366 lbm/sec

Thrust (norninal) = 100 + 5 lbf(vac)

D 1.77 in.
chamber
Nozzle Contour
X R
0.000 0.434 Throat — Blend nozzle
0.278 0.513 contour with throat
0.474 0.635 using 0.527 radius of
0.812 0.832 curvature. See Fig.3.
1,339 1.106
1.400 1.134
1.866 1.349
2.393 1.565
2,920 1.762
3.447 1.940
3.974 2.101
4,501 2.245
5.028 2.372
5.555 2,483
6.082 2.583
6.609 2.671
6.984 2.730 Exit Plane
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An unsteady time-dependent finite difference solution procedure was
used to describe the transonic flow in the nozzle throat region. Initial con-
ditions consisted of the mixed profiles of the gas dynamic properties at the
entrance to the convergent section (Fig.2). Non-isoenergetic flow was con-
sidered (i.e., O/F gradients) as well as equilibrium chemistry throughout

the transonic region. Supersonic starting conditions for the MOC program

«

were obtained from the transonic flow description. The Mach number, flow
angle and O/F ratio distribution on the starting line are shown in Fig. 4.
(See Tahle 1 for a description of the operating characteristics of the R-4D

engine.)
3.3 NOZZLE FREEZING POINTS

The variable O/F MOC program was used to describe the flow field
within the nozzle and plume regions. The AeroChermn Finite-Rate program
was applicd to determine the freezing points for the centerline and wall
strearnlines. The values of freeze pressure were determined by plotting the
variation of the constituents along the centerline and wall of the nozzle. The
mole fraction variation of the constituents along the centerline of the R-4D
nozzle are shown in Fig.5. The rcgion where there is negligible change in
the mole fraction of the coastitucnts is defined as a transition zone from fast
(necarly equilibrium) to slow (nearly frozen) reactions, For computational
purposes the zone is shrunk to a point (the freezing point). The pressure
corresponding to that axial location becomes the freezing pressure. The O/F

ratio of 3.07 on the centerline was frozen at 0.008 atrmospheres of pressure

Ll

while the O/F ratio of 1,24 on the wall was frozen at 3.0° atmospheres. The
freezing pressurc used for the O/F ratios other than those on the centerline
and wall was taken as the value obtained by a straight-line variation betwecen
the calculated wall and centerline values. Since no practical means was
available to determine the freczing point values for the intermecdiate o/F
ratios and aay variation chosen was arbitrary, the use of the least confusing
straight-line variation seemecd appropriate. The final nozzle flow calculation
was done using the equilibrium/frozen thermochemical properties shown in

Table Zi
16
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Radial Position (in.)

0.50
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0
Flow Angle, Degrecs
l._/\/ [ | | l |
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Mach Number
l | | I | [
1.0 1.4 1.8 2.2 2,6 3.0

Oxidizer to Fuel Mass Ratio

Starting Line at 0.124 in. from Throat.
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Fig.4 - Starting Line Conditions for MOC Calculation.




Mole Fraction of Carbon Dicxide
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Fig. 5a - Constituent Mole Fraction Variation Along the Centerline of
the R-4D Engine T1lnozzle at an O/F of 3.07 for an MNIH/NZO4
Propellant System.
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3.4 NOZZLE AND PLUME CALCULATION

Nozzle and plume calculations were performed as described in Section 2.
Since the MOC program will handle only one shock wave at a time, the nozzle
calculation was terminated when the internal shock intersected the axis. The
problem was then inverted and the plume flow field was generated, using down-
stream shock points and nozzle exit plane points as a start line (Table 3). The
plume was allowed to expand into a quasi-vacuum and the effects of the nozzle
boundary layer were included. Because of the large expansions encountered,
a characteristic mesh control was imposed on the solution to prevent diver-
gence problems. The maximum me sh size permitted was 20 in. measured
along any side of a Mach quadralate ral., The effect of the boundary layer was
to cause a greater cxpansion due to the lower lip Mach number of the boundary

layer.
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Scction 4
PRESENTATION OF RESULTS

4.1 DiSCUSSION OF RESULTS

The results of the study are presented in terms of plume parameters
as a function of spatial location, i.c., contour plots, as well as centerline
property distributions within the plume. Tables of therm ochemical prop-

ertics uscd in the generation of the plume arc also presented.

The distribution of mass flow in the plume is shown in Fig. 6. FEach
streamline represents a percentage of the total mass flow contained in the
region between the streamline and the centerline, Contour maps of the plume
properties, i.c., Mach mimber, temperalure, pressure, density, flow angle,
pitot pressurc and O/F ratio are prescnted in Figs. 7 through 13, It can be
secn that these contour plots are not the smooth patterned curves normally
presented for plume calculations. It should be rccalled, however, that in
keeping with the study objective, every calculable effect was taken into ac-
count in generating the detailed plume properties presented herein, It is not
surprising, therefore, to expect slight irrcgularities in the contour plots
arising from such effects as O/F gradients, entropy gradients (due to shock
waves), nozzle wall boundary layer, and the nozzle contour itself, which

gives rise to additional compressions in the flow ficld,

In addition to the contour maps, plots of the cente rline distributions
of the plume parameters are presented in Figs. 14 through 17. The pitot
pressures presented in Fig. 15 should aid in comparing experimental data

which usually consists of pitot pressure measurements along the centerline.

As discussecd in Section 2.4.1, continuum analyses were used throughout

the flow field. To obtain an indication of where non-continuum effects may
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become detectable, however, the translational "frecze" line based on a
Knudsen number criterion of 1.0 was computed and is shown on the tempera-
ture contour plot, Fig.8. The major deviation caused by non-continuum
effects would be in the streamwise temperature component which would be
somewhat higher, in the region above the "freeze! line, than the continuum

calculations shown in Fig. 8.

Since the kinctics analysis, previously discussed, indicated that the
flowfield chemistry was frozen inside the nozzle, the entire plume was com-
puted using frozen chemistry. The species present in the plume as a function

of O/F ratio are presented in Table 4.
4.2 SUMMARY OF RESULTS

The plume flow field of the R-4D motor was analytically generated,
the analysis starting at the injector and continuing through the combustion
chamber, the subsonic and supersonic nozzle sections, and 50 feet into the
plume region. To provide the basic information needed for doing impinge-
ment analyses, the plume data were generated to be as detailed as possible
including all the existing calculation procedures to treat the physical phe-
nomena present, The momentum loss because of combustion, O/F maldis-
tribution, kinetic effects and two-dimensional effects which cause non-ideal
engine performance were treated as integral parts of the analysis, The
possibility of condensation was considered but incipient condensation or
calculation of a multi-phase plume flow ficld was not treated in this analy-
sis, The effect on the plume flow field of nozzle boundary layer and inter-
nal shocks appeared in the plots of physical properties of the plume, While
the plots of the flow properties contain certain irregularities not present in
a more simplified plume analysis, thesc irregularities were found to be
present when every calculable effect in the flow was treated in generating
the plurne properties, When detailed impingement analyses are required,
the inclusion of all the calculable effects was therefore concluded to be

necessary and worthy of the increased time and effort,
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CONSTITUEN
FOR THE R-4D ENGINE NO
1.24 TO 3.07 WITH AN N

Table 4

T MOLE FRACTIONS AT THE FREE
77Z1LE FLOW WITH AN

7ZING POINT PRESSURES

204/MMH PROPELLANT SYSTEM

O/F VARIATION FROM

330

O/F Ratio | 1.240 1.290 1.300 1. 1.380 1.440
co 0.15345 0.15204 0.15147 0.14975 0.14674 0.14294
co, 0.02404 0.02462 0.02501 0.02619 0.02829 0.03099
H 0.00256 0.00440 0.00458 0.00516 0.00615 0.00748
H, 0.28853 0.27303 0.26958 0.25927 0.24241 0.22262
H,G 0.24250 0.25436 0.25717 0.26547 0.27893 0.29439
NO 0.00002 0.00005 0.00005 0.00007 0.00010 0.00016
N, 0.28857 0.29074 0.29133 0.29307 0.29594 0.29926
o 0.00000 0.00001 0.00001 0.00001 0.00002 0.00005
OH 0.00032 0.00074 0.00079 0.00100 0.00140 0.00207
0, 0.00000 0.00000 0.00000 0.00001 0.00001 0.00003

O/F Ratio | 1.636 1.814 2.170 2.526 2.882 3.070
CcO 0.12861 0.11302 0.07754 0.04338 0.00860 0.00000
co, 0.04160 0.05360 0.08144 0.10778 0.13617 0.14272
H 0.01163 0.01408 0.01255 0.00695 0.00099 0.00000
H, 0.16313 0.11803 0.05766 0.02607 0.00507 0.00000
H,O0 0.33876 0.36910 0.40147 0.41113 0.42282 0.42815
NO 0.00062 0.00155 0.00462 0.00695 0.00482 0.00014
N, 0.30933 0.31720 0.32940 0.33886 0.35127 0.35705
o} 0.00027 0.00087 0.00320 0.00443 0.00161 0.00000
OH 0.00582 0.01141 0.02301 0.02559 0.01182 0.00004
o, 0.00023 0.00112 0.00912 0.02885 0.05682 0.07190

L .
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Appendix A
A.1 INTRODUCTION

During study of the RCS motors for the Skylab configuration, experi-
mental data from tests conducted at Manned Spacecraft Center (MSC) were
used to help verify the analytical techniques and assumptions employed in the
calculational schemec. Unfortunately, the test results were for an RGS engine
(R-4D) using NZO4/A-50 propellants, wherecas the Skylab configuration RCS
engines utilize NZO4/MMH propellants. Nevertheless, it was deemed necessary
to perform these correlations in order to determinc the appropriate mixture

ratio variation, since the engines are identical and only the propellants differ.

The experimental data indicated the presence of strong oxidizer-to-fuel-
ratio (O/F) gradients and this fact was verified by injector mass flow and O/F
distribution information received from the Marquardt Corporation. The ex-
perimental specific impulse (Isp) was much lower than that computed by con-
ventional means, also indicating the presence of O/F gradients, perhaps
coupled with combustion inefficiency. Thus, a preliminary step in the study
was to determine an appropriate O/¥ ratio gradient which would not only
predict the ISp more accurately, but would also correlate the experimental
measurements of pitot pressure and heating rates across the plume near the

exit plane of the nozzle.
A.2 DISCUSSION
A.2.1 Background

There were two basic measurements available, (1) pitot pressure and

(2) stagnation point heating rate data from surveys made across the plume

A-l



near the exit plane and at several stations downstream of the exit. In addition,
a measure of the engine cfficiency was available by way of the Isp. Initial
effort directed toward determining the O/F ratio profile consisted of a two-
pronged approach. Since the incoming or overall O/F ratio was known, it was
used as a basic constraint on the system and the O/F profile at the nozzle
throat was perturbed until the best fit of the pitot pressure data at the exit
plane was obtained. Using the O/F ratio distribution determined in that man-
ner, the Isp was then examined to see if it was in line with the experimental
value. The other approach (and the one which was ultimately selected due to
its more fundamental nature) was based upon an analysis beginning at the in-
jector face and proceeding throughout the engine. This approach accounts for
mixing and burning betwecn the various streams of differing O/F ratio in the
combustion chamber as well as the two-dimensional effects in the transonic
region. The supersonic expansion region was treated by the method of char-

acteristics as in the preceeding approach,
A.2.2 Detailed Calculations

The O/F ratio distribution was determined from injector information
and the assumption of constant mass flow per unit area. The centerline O/F
value was fixed at the O/F ratio of the preigniter and the wall O/F value was
determined from the overall O/F ratio, assuming a parabolic profile. These

assumptions resulted in a distribution described by the following expression
n = 3.5- 3.76 r2 s

where 7 is the O/F ratio and r is the radial coordinate in inches at the

injector.

~ Following the calculational scheme previously outlined, the engine nozzle
and plume flowfield was computed. Correlations with experimental pitot pres-
sures available are shown in Figs. A-1 through A-3. Figure A-4 shows the

correlation for the stagnation point heating rate values.
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In Fig. A-1 the measurements and calculations are for a plane 1/2-in.
downstream of the nozzle exit. This figure shows the solution obtained from
a non-distributed O/F ratio calculation fixed at a constant value of 2.0. As
can be seen, the correlation, which assumes a constant O/F ratio is reason-
able near the nozzle lip, but deviates quite badly near the centerline.
Results frbfn the distributed O/F ratio calculation also plotted on Fig. A-1

show significant improvement in the correlation, especially near the axis.

Some comment is in order concerning the relationship between the pitot
pressure correlation near the centerline and the location of the shock wave
generated by the reflex nozzle contour. The constant O/F ratio analysis does
not even come closc to predicting the proper shock location, whereas the dis-
tributed O/T ratio result correlates quite well, The measured pitot pressure
data was noted to drop rapidly near the nozzle lip (the data were taken 1/2-in.
downstream of the nozzle exit plane). The conclusion might be reached that
this effect is due entirely to the nozzle lip expansion fan, but the analysis shows
that this region is not greatly affected by the fan, but is actually altered greatly
by the value of O/F ratio used at the wall. This effect is exemplified by com-
paring the pitot pressures near the nozzle lip. The constant O/F ratio value of
2.0, produces pitot pressures which are a factor of two higher than those pre-
dicted by the variable O/F ratio analysis along the streamline whose O/F ratio
is 1.2. Here, of course, the variable O/F ratio result is much closer to the

experimental value.

As previously mentioned, the measured Isp was much lower than the
constant O/F ratio prediction. The predicted Isp using a constant O/F ratio
analysis at the incoming mixture ratio value of 2.0 was 340 lbf-sec/lbm where
the measured Is was 280 to 285 lbf-sec/lbm. The mixture ratio variation
used in this analysis resulted in an Isp prediction of about 300 lbf-sec/lbm,
which means, of course, that in addition to the mixture ratio variation, there

must also be some combustion inefficiency to account for the remainder of

the performance degradation,



By arbitrarily reducing the propellant heats of formation, exactly the
right Isp can be produced; however, the objective of this study was not to
predict performance but rather to describe the plume properties. Reducing
propellant heats of formation had relatively little effect on correlating pitot
pressure. The analytical curve tended to shift toward the centerline but its
magnitude was not significantly altered. Since the plume property data will
be used to design the vehicle, the data was generated without arbitrarily re-

ducing the heats of formation in order to predict conservative design numbers.

Figures A-2 and A-3 prescnt pitot pressure correlations at two other
downstream stations and, as can be scen, the comparison is quite good, in-
dicating that the analysis procedure utilized is applicable. In Fig. A-4 a
comparison of the hcating rates at a station 21-in downstream of the exit
plane is shown. Without going into detail about the heating rate calculations
note that the same procedure was used in calculating both the constant and the
variable O/F ratio values so that any difference in the correlation is due

strictly to the O/F gradient.
A.3 CONCLUSIONS

This auxiliary R-4D engine study was carried out, at least in part, to
verify the analytical technique utilized for the study reported in the main body
of this document. Comparison with measured pitot pressures, heating rates

and performance parameters have shown that the procedure is quite adequate,
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